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Coherent and incoherent trapping of a diffusion-assisted system in the presence of an external
periodic field
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Field induced trapping on a line segment of a diffusion-driven system is studied with an aim to gain an
insight into the occurrence of coherent stochastic resonance, which is thoroughly explored as synchronized
mean-free passages to the traps. Synchronization~coherence! between the external bias, the noise in the system
and the temporal trapping events is found to attain an optimum value by increasing the forcing frequency
towards the relevant resonant frequency, revealing a minimum in the nonmonotonic mean-free-passage time
~MFPT! to trapping. The MFPT at a given forcing frequency, is also nonmonotonic when considered as a
function of the diffusion coefficient of the medium, and reveals a maximum exhibiting the least synchroniza-
tion effect ~incoherent trapping!.
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I. INTRODUCTION

The effect of electric field on the diffusion-influenced e
cape probabilities of ion-pair systems has a long age-old
tory @1#. The observation of the phenomena that t
diffusion-driven particle mobility towards a trap increases
the presence of an externally applied driving field and atta
a maximum at a particular resonant frequency of the fie
which in the literature is known as coherent stochastic re
nance~CSR! @2–5# and is the manifestation of complex in
terplay between random noise and a deterministic perio
signal, is rather new. The basic impetus to study the fun
mentals of CSR, apart from exploring the physical origin
the occurrence of such phenomena, stems from the fact
the idea behind it could eventually be utilized in the sepa
tion technology for better efficiency and resolution. Elect
phoretic separation of proteins, DNA@6#, the chromato-
graphic@7#, and the recently proposed elegant model of h
performance chromatographic@8# separation, tuned by
modulated external fields, of chemical species from a m
ture with close properties are the few examples that can
mentioned in this regard. The scope and utility of the pres
work is to obtain an insight into the occurrence of the C
phenomena for the diffusive motion of particles on a li
segment~terminated by two absorbing traps at the boun
aries! in the presence of an external periodic field.

The CSR can be viewed as one of the varieties of stoc
tic resonance~SR! that envisages the apparently paradoxi
beneficiary effects of random noise. SR was originally p
posed to account for the dynamical aspect of a global clim
@9#. Soon thereafter, the notion behind the noise, which
normally thought of as an undesired interfering agent w
the signal detection has been changed due to its count
tuitive constructive facets that might rule the periodicity
the primary cycle of recurrent earth’s ice ages. This h
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prompted a wide range of studies@10# that have convincingly
shown that certain levels of noise can lead to more orde
the system dynamics rather than merely acting as a nuisa
Today, SR is understood in a rather widespread sense a
identified as a nonmonotonic response of the system un
the combined influence of the periodic signal and the no
as a function of some characteristics of either of them@9,10#,
or else as a function of parameters characterizing the int
sic time scale@8,11#. The extrema in the nonmonotonic sy
tem response usually correspond to synchronization betw
the influencing forces. And resonance is viewed as a poin
maximum synchronization@12#. Such a broader definition o
SR per seis also thought to include the related phenome
such as CSR, which is the concern of this work.

Under the rubric of SR, most theoretical attempts a
their experimental realizations are primarily concerned w
a particle confined in a monostable, bistable, or multista
potential undergoing classical motion, subject to perio
forcing of the potential well~s! and are studied in terms o
residence-time distribution. The periodic forcing signal
such that it alternately raises and lowers the wells with
spect to the barrier but the amplitude of the signal is ins
ficient to cause the particle to surmount the barrier. A
given frequency of the applied field, the addition of noi
enables the particle to switch from one well to the other w
nonzero probability. Increasing the noise strength furt
leads to increased synchronization between the noise ind
hopping and the field induced fluctuation of the wells. B
yond the maximum synchronization point, an increment
the noise strength will eventually lead to trivial decrease
the signal-to-noise ratio. This results into a bell shaped cu
for the system response with respect to noise strength. On
other hand, keeping the noise strength fixed and varying
forcing field frequency should also lead to a point where
maximum synchronization between them is expected as
when the necessary criterion for the synchronization@10# is
satisfied. As a result, SR can be studied by varying either
field frequency or the noise strength.

Since the invent of SR concepts, it has been gener
accepted that its occurrence involves three essential ingr
©2003 The American Physical Society13-1
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ents, namely, a source of ‘‘random noise,’’ a determinis
input signal, and a third ingredient, the presence of a non
ear potential term that couples the random and the peri
signal to produce the maximum system response~signal-to-
noise ratio!. In a linear potential system, on the other han
the additive white noise would only lead to a trivial decrea
of the signal-to-noise ratio. Based on this, it was a comm
belief that SR is essentially the phenomenon which occ
only with the nonlinear potential term. However, recently t
SR phenomena have been reported in a periodically dr
linear system in the presence of multiplicative colored no
rather than additive Gaussian noise@13#. There are, however
some systems@2–5#, slightly different from those above, in
which a particle undergoing diffusive motion in a line se
ment gets trapped at the two ends. The trapped and the
trapped states of the system can be thought of as repres
tive of the two states of the double-well potential in SR. T
influence of the externally applied periodic forcing on t
trapping dynamics can be equated to the forcing of the w
heights ~with respect to the barrier! for the SR to be ob-
served. Whereas, the thermal white noise~diffusion! that the
particle experiences in the line segment is equivalent to
added noise that helps to surmount the barrier as it is in
case of SR. As a result, it is not surprising that the th
ingredients—the traps, the diffusion, and the perio
forcing—can eventually give rise to some nonmonotonic
sponse of the system, namely, the mean-free-passage
~MFPT! to trapping as a function of forcing frequency, mu
like the case of SR. To distinguish this phenomenon from
other form of SR, it has been termed in the literature ‘‘c
herent stochastic resonance’’ and is also the subject of
interest in this work. In CSR, the noise~diffusion! tends to
equilibrate any nonequilibrium particle distribution over t
line segment. The external periodic bias, on the other ha
tends to generate a nonequlibium distribution at the line e
by forcing the particle towards the traps~a positive bias
forces towards the right trap, a negative bias towards the
trap of the line!. We will show that for certain noise strengt
the competitive interplay between these two leads to co
ent trapping. Any further increase of the field periodicity a
given noise strength will result in the loss of coheren
whereas, when viewed as a function of the diffusion a
given periodicity of the field, the noise leads to incohere
trapping up to certain noise strength, beyond which the s
tem becomes completely diffusion controlled.

In the realm of CSR@2–5#, what appeared important fo
the CSR to be observed is the temporal profile of the ex
nally applied field. Fletcher, Havlin, and Weiss@2# were the
first to consider such a system in the presence of a sinuso
field for an initial random distribution of particles within th
confined line segment. Based on a discrete random walk
proach, it was shown that the MFPT on the line segm
passes through a minimum as a function of the frequenc
the sinusoidal field. Further, in order to explore the possi
ity of occurrence of CSR in the case of a bias term in
form of a telegraphic signal, exact expressions were obta
for the MFPT of the same dynamical system in the prese
of deterministic and periodic telegraphic bias@4# as well as
for the case of random telegraphic force@3# modeled as di-
06111
c
-
ic

,
e
n
rs

n
e

n-
ta-

ll

e
e

e
c
-
me

e
-
ur

d,
s

ft

r-

,
a
t
s-

r-

al

p-
t

of
l-
e
ed
e

chotomous Markov noise. A common observation in the
studies@3,4# was that the MFPT is an increasing function
the frequency of the applied field until a sufficiently hig
frequency is reached when the system’s response beco
uninfluenced by the applied force for all practical purpos
Thus, an occurrence of resonant like behavior~when viewed
as a function of the forcing frequency! is ruled out in the case
of two absorbing boundaries for a telegraphic bias, be it r
dom or deterministic. This has prompted another analy
study @5# for the same dynamical system subject to a mu
step periodic forcing, resulting in the reoccurrence of a re
nant behavior. These studies involving a sinusoidal bias@2#,
and its single-step@4# or multistep@5# telegraphic approxi-
mations are closely related in spirit to the periodicity of t
forcing fields and thus the periodicity factor could not be t
origin of the occurrence of CSR. Rather, what appeared
portant for the CSR to be observed is the temporal shap
the field, especially at the early time scale: for an increas
bias during the first half cycle period of the field, CSR
expected to be observed, whereas a constant bias of m
mum magnitude during this time will prevent any CSR fro
being observed. Here, we will show that the occurrence
CSR as a function of the forcing frequency is indeed a bo
fide resonance@12# that leads to a coherent trapping of th
particle. In addition, we will present the case where t
MFPT as a function of noise strength~diffusion! can also
give rise to nonmonotonic variation of the MFPT albeit t
trapping in such situation is only incoherent. Thus, we w
show that a nonmonotonic MFPT can appear by varying
ther the field frequency or the noise strength, very simila
to what has been shown in the case of SR involving me
stable systems@9,10#. Consequently, the nonmonotonic b
havior as a function of diffusion might also be utilized fo
electrophoretic separation purposes in the same spirit as
in the case of a resonant forcing frequency.

In contrast to the separate elegant analytical approache
the same problem involving random external force@3#, peri-
odic telegraphic force@4#, and a multistep periodic force@5#,
our approach here is numerical. This allows one to cons
a variety of forcing fields by utilizing the same algorithm an
also eventually has allowed us to analyze in a greater de
the spatiotemporal profiles of the distribution function with
the confinement. Based on this, we will show that the occ
rence of CSR is an ‘‘input-output’’ synchronization even
Utilization of the same numerical recipe has allowed us
view the nonmonotonous variations of the MFPT, whi
might arise not only as a result of the coherent trapping
also for the incoherent one. In Sec. II, we will consider t
basic theoretical formulations and will solve the correspo
ing field induced diffusion equation. Illustrative calculation
will be presented in Sec. III to help delineate the origin
occurrence of the phenomena. In Sec. IV, we will conclu
this work.

II. THEORETICAL FORMULATION

The simplest generic model of CSR is the on
dimensional overdamped dynamical system defined by
Langevin equation
3-2
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COHERENT AND INCOHERENT TRAPPING OF A . . . PHYSICAL REVIEW E67, 061113 ~2003!
Ẋ5j~ t !1F~Vt !, ~1!

for the state variableX(t) in which j(t) is some form of
noise andF is the external periodic bias that modulates t
state of the system with a frequencyV. Thus, the system
evolution is governed by the interplay between the noi
assisted mobility of the system particles and their perio
modulation due to the external input signalF(Vt). The phe-
nomenon of CSR that we are interested in is concerned
the type of periodic modulation term~namely, sinusoidal and
periodic telegraphic signal! that can significantly change th
noise-alone system dynamical properties with its coopera
either coherently or incoherently. The system is confined
tween two traps located at the two ends of a line segm
where the system particles are absorbed but otherwise
vive within the confined line segment. The present system
completely defined by these specifications although fo
nonlinear system where SR has been reported@9#, such as a
bistable potential system a deterministic force term need
be added on the right-hand side of Eq.~1! to account for the
potential system response towards the input periodic sig
Thus, in the present linear and confined system, the part
are assumed to be unbound and be represented by Eq.~1! for
the stochastic system variableX.

Let us assume that the noise term in Eq.~1! has a vanish-
ing mean^j(t)&50, and a certain time correlation given b

^j~ t !j~ t8!&52Dd~ t2t8!, ~2!

with D having the dimensions of a diffusion coefficient.
the presence of this Gaussian white noise, the properties
random variablex(t), such as the time-dependent partic
position, may be summarized in terms of the probability d
sity function r(x,t), which satisfies the one-dimension
Fokker-Planck equation given by

]r

]t
5D

]2r

]x22AF~Vt !
]r

]x
. ~3!

Here, the positive constantA is assumed to be unity, which i
tantamount to presenting the solution of Eq.~3! in the dimen-
sionless units. Next we match the present stochastic sys
with the following reaction scheme for a bimolecular rea
tion in order to arrive at an appealing correlation with t
trapping dynamics.

A1B ——→
k~ t !

P, ~4!

whereA denotes the ‘‘reactant’’ state that undergoes diffus
motion within the confinement andB denotes another ‘‘reac
tant’’ representing the traps at any one of the two ends of
line segment. The ‘‘product’’ state,P corresponds to escap
after reaching the traps.k(t) is the second-order time
dependent rate constant of the bimolecular reaction sche
The escape of the reactantA at the boundaries may b
thought to be satisfied byr(x,t) as given by

r~0,t !5r~L,t !50, ~5!
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which corresponds to the traps located at the two ends of
line segment of lengthL and the field induced diffusive mo
tion within the line segment is governed by Eq.~3! such that
x can take all positive values between 0 andL. In order to
solve Eq.~3!, we also need an initial probability distributio
function at timet50, for which we consider the situation i
which the particles are assumed to be set in motion star
at x0(x05L/2), i.e.,

r~x0 ,t50!5d~x2x0!. ~6!

With these initial and boundary conditions given by Eq
~5! and ~6!, Eq. ~3! is solved for the following choice of
periodic field functions@although the numerical techniqu
that we employ to solve Eq.~3! may also be applied to othe
types of periodic signals and not necessarily restricted
these fields#:
sinusoidal field@2#

F~Vt !5v sin~Vt !, ~7!

and the periodic telegraphic field@4#

F~Vt !5H 1v for tP@2nT,~2n11!T#

2v for tP@~2n11!T,~2n12!T#,
~8!

wherev is a strength of the bias, which is taken to be eq
to 1 andn50, 1, 2, . . . . Theperiod T0 of the telegraphic
signal is 2T and its rate~frequency! is the same as that of th
sinusoidal signal. Thus,T5p/V such that the period of both
the field is T052p/V. Constructing the telegraphic fiel
with such specification, eventually means that each h
cycle of the sinusoidal field has been replaced by a cons
bias of amplitude6v. Note that the particles starting atx0 at
t50 experiences a positive bias during the first half per
of both the fields, causing the particles first to drift towar
the right hand trap until the bias changes when the surviv
particles will have drifted towards the left-hand trap. In oth
words, a positive bias forces the particle towards the ri
trap and the negative bias towards the left trap. The ma
difference between the two fields is that in each half per
of a sinusoidal field the particles experience a time vary
bias, whereas for the case of a telegraphic signal it is
constant bias during its each half cycle that forces the p
ticles. As we shall see below, this difference causes the
herent trapping of the particles in the case of sinusoidal fi
~and not in the case of telegraphic field! and thus allows the
CSR to be observed.

Equation~3! with the associated initial and boundary co
ditions and the various forms of external fields can be sol
numerically. We employ the Crank-Nicolson finite differen
scheme@14# for this purpose, which eventually provides a s
of tridiagonal matrix equations, the solution of which can
obtained with the efficient routines available@15#. Also this
method is robust which provides stable, accurate, and c
verged results.

The simplest parameter that exhibits CSR is the MF
that corresponds to the time to reach the traps. The proba
ity that the free-passage time of the diffusing system~starting
3-3
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from x0) to the traps at 0 andL is greater thant is obtained
from the solution of Eq.~3! and is given by

S~ t !5E
0

L

r~x,t !dx, ~9!

which by definition is also the survival probability of th
particle distribution at timet. This finally gives rise to the
formulation of the MFPT of the diffusing system to be d
rectly given by

^t&5E
0

`

S~ t !dt. ~10!

With this definition of the particle survival probability, i
follows from the phenomenological kinetic law for the rea
tion scheme~4! at a given concentrationrB of the reactantB
that the reaction rate law is@dS(t)/dt#52k(t)S(t)rB . As a
corollary to this, let us also define a quantity, the fre
passage-time density function~FPTDF!, g(t) for the prob-
ability that the reaction occurs betweent and t1dt. Physi-
cally, g(t)dt then represents the probability that the parti
reaches the trap at the line boundaries over the time inte
betweent andt1dt, and thus the reaction takes place. Th
by definition g(t) also represents the reaction rate and
given by

g~ t ![k~ t !S~ t !rB52
dS~ t !

dt
. ~11!

Below we will utilize this definition of the FPTDF, while
exploring the occurrence of CSR.

Analysis of the results requires an understanding of th
relevant time scales. The first one is the MFPT^t&, as intro-
duced above and originates from the combined influenc
the diffusion and applied periodic field. The second one
the timetD as it would be in the absence of periodic bia
given astD5(L2x0)x0/2D representing the pure diffusion
driven particle residence time within the confinement bef
it gets trapped at the line boundaries. The third relevant t
scale in this problem is the timetF required for the particle
to be trapped at the boundaries driven by the external
alone. It is important to note here that for such an even
take place for ad-function initial distribution of particles@cf.
Eq. ~6!# one must satisfytF,T0/2. In other words, when this
condition is satisfied, it is the first half period of the fie
within which the particle can be trapped~in the absence o
diffusion! driven by only the external bias, failing which th
particle will oscillate back and forth in line segment requ
ing an infinite time to be trapped. For a telegraphic fieldtF is
simply given astF5(L2x0)/v. For a sinusoidal field, on
the other hand,tF can be obtained requiring that (L
2x0)21*0

tF sin(Vt)dt51, from which one can obtaintF

given astF5V21 cos21@12(L2x0)V#. Note that bothtD
andtF can be viewed as parameters characterizing the
tem under consideration~such as the confiner length, initia
condition, noise strength, applied field periodicity, and
amplitude!. Thus, they can be identified as causes of
consequent system dynamics, measured through^t&. As is
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obvious depending on the causes~i.e., values oftD andtF)
there can be a variety of consequences. For example, n
level D can be so low as to ensure thattD@tF and the
system dynamics is controlled entirely by the external fi
characteristics. With further increase of noise level to
extent thattF!tD condition is still maintained, one can a
rive at an incoherent trapping regime where the noise ad
increases MFPT. On the other hand, noise~diffusion! acts in
coherence with the applied field and resonance occurs w
tD;tF . This stochastic resonance leads to an enhancem
of the effective passage rate. Next we will present th
cases.

III. ILLUSTRATIVE CALCULATION

Diffusion in a confinement tends to equilibrate the no
equilibrium particle distribution, if any, giving rise to a un
form distribution along the confining line segment. The a
plied bias directs the distribution to the traps~a positive bias
towards the right and a negative bias towards the left!, and
thus tends to produce a nonequilibrium particle distributio
As a result, an ordered and directional trapping of the fi
driven particles might get disturbed or assisted interfer
with the diffusion in the medium, which can be referred to
noise. The degree and the nature~coherent or incoherent! of
interference will, of course, depend on many factors ap
from the temporal profile of the field~e.g., sinusoidal, tele-
graphic!, namely, the frequency~period! and strength of the
applied field, strength of the noise~diffusion! in the system,
the length of the line segment, and initial position of t
particles in this line segment. The fate of the particles with
the confiner is largely decided by these factors. For exam
for a given confiner length and initial position of the particl
within it and keeping other factors unaltered, one can in
itively conceive of several possible combinations of the fie
frequencies and the noise strengths. Their natural co
quences on the system lifetime~MFPT! are depicted in Fig. 1
for the two types of field chosen. The results presented in
figure are representative of the combined influences of
noise, inherent in the system, and external periodic forc
on the irreversible trapping process, which can also be ta
to represent a finite stochastic system that undergoes d
sive motion~starting from the middle of the confiner! char-
acterized by a Gaussian white noise of strengthD under the
influence of an external force.

The landscape of the MFPT values in theD-V space
shown in this figure reestablishes the near-analytic soluti
on the investigation of occurrence of CSR involving a us
telegraphic@4# and a multistep telegraphic@5# field ~note that
a multistep telegraphic field is another way to represen
sinusoidal field!. Namely, a sinusoidal~multistep oscillating
telegraphic! field can induce a coherent motion in the sy
tem, which eventually reduces the free-passage time t
minimum at a resonant frequency, beyond which the coh
ence is lost and the MFPT value increases. This we call
occurrence of CSR. For an usual telegraphic field, on
other hand, there is no such resonant frequency and
MFPT value for such a field is an ever increasing function
the field frequency until it converges to a pure diffusi
3-4
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value. In addition to these, from Fig. 1 it is also clear that
MFPT value passes through a maximum when viewed a
function of noise strength, prevailing in the medium, for c
tain range of values of forcing frequencies. We have a
noticed that the occurrence of such a bell shaped MFPT c
acteristics as a function of the noise strength at certain fi
forcing frequency for other types periodic fields, such as
cosine, the sawtooth, and the ramp-wave fields~not reported
here! is always inevitable. This is one of the main observ
tions of this work, which is much reminiscent to the stoch
tic resonance phenomena observed in metastable sys
@9#, albeit occurs due to a different form of mechanism. N
we will discuss the underlying mechanism behind the occ
rence of these extremes, first qualitatively and then m
rigorously with the help of the calculated FPTDF values.

A systematic approach towards this goal would be
identify four extreme combinations ofD andV values in the
D-V space, where these phenomena could be observed.
are, a very low and a very high value ofD and for each of
these, a very low and a very high value ofV. For both the
limits of D, when the forcing frequency is very high, suc
that tF.T0/2; the effect of the external bias would b
merely the rapid oscillatory motion of the particle within th
confiner. As a result, the trapping dynamics would be entir
diffusion limited. When bothD and V are sufficiently low
~such thattF,T0/2), noise will act only as a small distur

FIG. 1. TheD-V landscape of mean-free-passage times^t& to
the traps, located at the boundaries of a line segment of length
the applied periodic fields;~a! sinusoidal and~b! telegraphic. All
quantities are in dimensionless units.
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bance to the almost exclusively field driven system. Th
the trapping dynamics would be external bias controlled.
nally, for the same low value ofV, D could be very high
which would then control the dynamics. Put in simpler term
~for the extreme values ofD and V!, amongsttF and tD ,
whichever is less will eventually control the dynamics. It
only at the intermediate values ofD andV, so thattF andtD
are comparable, one would expect the interference betw
these two mechanisms leading to coherent trapping and,
sequently, the effective passage rate increases. Finally, w
the noise level is too low such that the system dynamic
controlled by external bias, further addition of noise~increas-
ing D! could lead to increase in particles’ MFPT to the tra
through incoherent interference. This we denote as inco
ent trapping. The spatiotemporal profiles of the probabi
distribution function@cf. r(x,t) of Eq. ~3!# presented in Figs.
2 and 3, and the extremes in Fig. 1 are the manifestatio
these interfering regimes.

In both the Figs. 2 and 3, the system is initially thought
be at the middle of the confiner with ad-peaked Gaussian
distribution. As stated above, the system has two states;
trapped and the untrapped ones. The results presente
these figures are the probability distribution function ref
ring to the untrapped state. Thus, as the trapping proce
r(x,t) decreases as a function of time. Also an unsucces
trapping at a given boundary will result into oscillations
this distribution back into the boundary of the confiner.
Fig. 2, we present the case for a sinusoidal bias at var
frequencies and at a given noise strength (D55). The cor-
responding characteristic time scales for the problem are
dicated. Evidently, the situation in Figs. 2~a! and 2~b! follow
the criterion,tF;tD @more so in the case of Fig. 2~b! than in
Fig. 2~a!#. As a consequence of this, the effective pass
time ^t& decreases more the more closely the value oftF and
tD is matched, and thus refers to coherent trapping. A
result, atV50.07 ~which we call resonant frequencyV res)
the MFPT is the minimum. This observation can intuitive
be understood: In a field-free case, the noise alone trie
randomize the initial distribution so that the spatial positi
of the peak of the distribution remains unchanged, wher
the width of the distribution spreads symmetrically ov
time. The tail of the distribution eventually gets trapped
the two identical boundaries. The time takentD for trapping
under this situation may be identified as the intrinsic time
the system. Whereas the field driven trapping timetF during
the first half cycle of the field~that drives the system toward
the right trap!, may be identified as characteristic extern
time. At tF.tD @cf. Fig. 2~a!#, diffusion is strong enough so
that some of the distribution can be simultaneously trap
in the left trap~escaping the initial positive bias! with the
field driven trapping on the right trap. This synchronous tra
ping, simultaneously at the two ends, can be thought to at
a maximum closer the values oftF andtD are matched. As
a result, until thenr(x,t) is not expected to show oscillator
behavior@cf. Fig. 2~a!#. Beyond this at a slightly higher fre
quency, astF,tD condition is approached, the noise and t
bias together set the distribution into an oscillatory moti
with effective coherent trapping at both ends. This is evid
from Fig. 2~b!, where at the resonant frequency, the distrib

for
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FIG. 2. Time-dependent probability density functionr(x,t) of
the diffusion- (D55) driven system that is initially at the middle o
a linear confiner (L540), terminated by two absorbing boundarie
The system is under the influence of a sinusoidal field with forc
frequencies:~a! V50.01, ~b! V res50.07, and~c! V50.5. Three
characteristic time scales~dimensionless! are indicated.
06111
tion, although it could not be successfully trapped during
first half cycle of the field, experiences the successive h
cycles in quick succession, leading to its effective trapping
the boundaries and thus the MFPT attains the minimum.
yond this point, coherence worsens. Note thattF for a sinu-
soidal field is a function ofV, passes through a minimum
and has finite values withinV<2/(L2x0). Beyond this, the
rapidity of the bias changeover renders the system diffus

.
g

FIG. 3. Same as Fig. 4 but under the influence of a telegrap
bias (V50.1) and at various noise strengths~a! D50.08, ~b! D
52, and~c! D520.
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COHERENT AND INCOHERENT TRAPPING OF A . . . PHYSICAL REVIEW E67, 061113 ~2003!
controlled such that the MFPT approaches the limits oftD .
The data presented in Fig. 2~c! is for a system close to thi
situation. It is important to realize here that a telegrap
field offers the maximum bias from the beginning, and th
tF in this case is not a function of the forcing frequency.
a result, a synchronized and coherent trapping as a func
of the forcing frequency could not be observed for te
graphic field, which~as discussed above! is in contrast to a
sinusoidal field.

Figure 3 depicts ther(x,t) data for a system driven by
telegraphic field at different noise strengths. In Fig. 3~a!
~whentD@tF), the external bias alone drives the system
the right trap such that the dynamics remains entirely fi
driven and thuŝt&'tF . Further addition of noise~such that
the condition,tF!tD still holds! acts incoherently with the
applied bias. The result presented in Fig. 3~b! is a represen-
tative case of the incoherent trapping. At this condition,
particles oscillate back and forth and the noise acts as a
sance, resulting into a longer system lifetime. Note that
both Figs. 2~b! and 3~b! it is this oscillatory motion that is
responsible for coherent and incoherent trapping, resp
tively. But in the former, each oscillation is a reflection
noise and bias assisted coherent motion that leads to siz
fraction of the population to be trapped, whereas in the c
of incoherent trapping, although the bias drives the system
the boundaries, it is the background noise over which th
oscillations build up. Even with further addition of noise
the extent thattF@tD , the system will again be diffusion
controlled. Figure 3~c! is a testimony to this effect.

Now we will further testify to the coherent~and so the
occurrence of CSR! and incoherent nature of trapping on
more rigorous ground. Before that it would be justified
summarize a bona fide resonance in the parlance of SR
Ref. @12#, with the help of an analog circuit, a continuou
stochastic process exhibiting SR has been simulated in
stochastic point process and the corresponding resid
times were mapped as a function of the frequency of
signal. The observations were as follows: residence tim
were found to form distinct peaks, which are the signature
synchronization between the two driving forces presen
the system. The strength of the first peak~namely, the area
under the peak! when plotted against the forcing frequenc
passes through a maximum, which is identified as the re
nant point; a point of maximum synchronization. Furth
study @16# involving a bistable potential system with on
absorbing and one reflecting point, in addition to support
these facts also showed that the FPTDF peaks are sepa
by the period of the field.

Following this we have presented in Fig. 4 the calcula
FPTDF values as a function of a sinusoidal forcing f
quency~at givenD! and also as a function ofD ~at a given
V! in presence of a telegraphic signal. It can be seen fr
Fig. 4~a! that as the frequency increases the number
FPTDF peaks increases. These peaks are separated b
half period of the field, which shows that the probability
untrapped to trapped state transition attains a maximum a
eachT0/2 time separation. The number of peaks depends
the system survival times, MFPT. The heights of the pe
fall off exponentially with time. Each odd peak refers to t
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trapping at the right boundary and each even peak to the
boundary. All these features are the signatures of sync
nized trapping events, which is similar to the case of
@12,16#. In Fig. 4~b!, the peaks are again separated by
half period of the field, but now as the noise strength
creases, the background over which these peaks appea
creases. This leads to longer lifetime for the system and t
more number of peaks appear within its lifetime. This is
until the point of maximum incoherence is reached~i.e., D
52). Beyond this, the number of peaks decreases and so
system lifetime also decreases, indicating some degre
coherent trapping, until at sufficiently high values ofD when
diffusion alone takes control of the dynamics.

The observation that areas under each successive
decrease can be taken to be a measure of the probabili
transition; larger the area more probable is the transiti
Integration of these peaks over time within the well pr
scribed limit give the areasPn5*Tn2aT0

Tn1aT0g(t)dt, whereTn is

the temporal position of thenth peak anda is taken to be
0.25. The limits of the integration necessarily mean that

FIG. 4. The distribution of the free-passage-time density fu
tion g(t) at various conditions:~a! fixed D (D55) at various fre-
quencies of a sinusoidal bias and~b! at variousD and at a given
frequency (V50.1) of a telegraphic bias. The length of the lin
segment is 40. The dimensionless values ofV andD and the cor-
responding MFPT values are indicated.
3-7
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T. BANDYOPADHYAY AND S. K. GHOSH PHYSICAL REVIEW E67, 061113 ~2003!
peak area, centered atTn , is calculated for exactly half pe
riod of the field. In addition, wherever necessary~cf. Fig. 4!
the exponential background of the noise is subtracted. F
ing the areas in this way ensures that their values wo
reflect the strength of synchronization, if any. In Fig. 5, w
have presented the peak areas along with the three chara
istic time scales of the problem.

In Fig. 5~a!, the case for a sinusoidal bias as a function
the frequency of the signal and at a given noise strengt
presented. In the figure, the region where the resulting
tem dynamics~^t&! is faster than either of its causes (tF and
tD) and, consequently, the occurrence of CSR, is clea
seen. At sufficiently low values ofV ~up to a frequency
when tF5tD) just one FPTDF peak appears with its ar
equal to unity. This reflects the most coherent trapping d
ing the long first half period of the field~longer than the half
period of the field at resonant frequency!. At slightly higher
V, the first peak areaP1 decreases butP2 and P3 start in-
creasing. This is indicative of the fact that an unsucces
trapping at the right boundary during the first half period w
increase the probability of trapping at next successive

FIG. 5. The MFPT~solid line! and the peak areas of the fir
three FPTDF peaks plotted as a function of~a! frequency of a
sinusoidal field whenD55 and ~b! D when the external bias is
telegraphic withV50.1. tF ~dashed line! andtD ~dotted line! are
also shown for the sake of comparison. The length of the line s
ment is 40. All quantities are in dimensionless units.
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cycles. For example, at resonant frequency (V res50.07) al-
thoughP1,1, P2 and P3 increase. For the chosen param
eters, at resonant condition although three half periods of
sinusoidal bias are necessary to completely trap the distr
tion, the frequency of the bias is such that these events o
in quick succession, thus effectively reducing the syst
lifetime. At still higher frequencies~until the system be-
comes completely diffusion controlled! each unsuccessfu
trapping at a given boundary causes more peaks to ap
but with decreasing area, rendering the system lifetime
increase. At resonant condition, the peak areas and their
poral positions become optimum such that the MFPT of
system is the minimum.

In Fig. 5~b!, the peak areas and the characteristic ti
scales are plotted as a function of the noise strengthD for a
telegraphic field at a given frequency. The region of incoh
ent trapping~when tF!tD), where the further addition o
noise merely increases the system lifetime, can be cle
seen in the figure. At low noise the system is completely fi
driven (̂ t&5tF) so that only one FPTDF peak area appea
As the noise strength increases,P1 decreases andP2 andP3
increase for the same given field frequency. This causes
MFPT to increase that eventually attains a maximum. Af
this, P1 increases~and MFPT decreases!, which is a reflec-
tion of the coherence. AttF5tD , the system again attain
the maximum value forP1 and so also is the coherence. Th
is also evident from the fact that the MFPT of the system
lower than either of thetF or tD . At still higher diffusion
coefficient, i.e., in a well-stirred system, the MFPT can
seen approaching the diffusion controlled limit. A word
caution is necessary here. Diffusion alone in the absence
field will always drive the distribution to the symmetri
boundaries, giving rise to one single FPTDF peak and
maximum area under it. Thus, going by the criterion that
FPTDF peak areas are a measure of synchronization
sometimes be proved deceptive for the type of diffusing s
tem that we are considering. As is the case in Fig. 5~b!,
where at sufficiently highD, the system is effectively diffu-
sion controlled butP1 maintains its highest value. Neverthe
less, it is an useful tool to measure the strength of synch
nization, but that would be more dependable with t
simultaneous knowledge of the system’s characteristic t
scales.

IV. CONCLUSION

We have solved numerically the field induced diffusi
dynamics of trapping of a system that undergoes o
dimensional motion in a line segment. This has allowed us
explore the occurrence of CSR in a much greater detai
terms of the mean-free-passage time to the traps. We h
introduced three characteristic time scales, in the light
which the nature of interference~coherent or incoherent! be-
tween the external bias and the inherent system noise c
be judged. They are, namely, the noise-free and exclusiv
field driven system lifetimetF , the field-free and exclusively
noise driven system lifetimetD , and the combined noise an
field driven time, the MFPT. We have shown that the nat
of interference can be characterized by the characteristic

g-
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COHERENT AND INCOHERENT TRAPPING OF A . . . PHYSICAL REVIEW E67, 061113 ~2003!
scales of its causes:tF;tD ~coherent trapping! and tF
!tD ~incoherent trapping!. Illustrative calculations are pre
sented to show that the degree of interference between
two driving mechanisms depends on many factors: the t
poral profile of the field~e.g., sinusoidal, telegraphic!, the
frequency~period!, and strength of the applied field, streng
of the noise~diffusion! in the system, the length of the lin
segment, and initial position of the particles in this line se
ment.

The system shows, as a function of bothV and D, a
nonmonotonic response, measured in terms of the MFP
the traps. These nonmonotonic responses are further
lyzed with the help of the areas under the FPTDF peaks.
extremes of the response, which are usually a measure o
synchronization between the influencing forces in the p
lance of SR, have been found to have two facets; cohe
and incoherent form of trapping. It has been found that
strength of synchronization is more~FPTDF peak area,P1 is
maximum! if the values of intrinsictD and externaltF time
scales are closer. The minimum of the MFPT values a
function of V ~in the case of a sinusoidal field! and the oc-
currence of CSR have been identified as the optimal of
condition and the temporal occurrence of the trapping eve
~cf. Figs. 4 and 5!, whereas, the maximum in the syste
response as a function ofD has been identified as an ou
y

s
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come of the incoherent interplay between the two drivi
mechanisms, adjudged by the FPTDF peak areas and
condition tF!tD such that further addition of noise in
creases the system lifetime.

The occurrence of the incoherent-trapping-related ma
mum as a function of the noise strength has been found t
almost universal with respect to the types of the external b
~sinusoidal, telegraphic, truncated telegraphic, cosine, s
tooth, or else the ramp-wave type!. But the appearance of th
minimum ~as a function ofV! and its concomitant, the CSR
is found to be bias specific. For CSR to appear, the exte
bias to start with should be an increasing function of tim
andtF a function ofV. We believe that as far as application
of the phenomena are concerned, such as the improved
ciency in the separation technology, both the extremes of
system response, which can be realized either by varying
noise intensity or else the forcing frequency, can be utiliz
as necessary.
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